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Abstract 

A multi-scale analysis of the structural stability of a carbon nanotube-polymer composite material is 
developed. The influence of intrinsic molecular structure, such as nanotube length, volume fraction, orientation and 
chemical functionalization, is investigated by assessing the relative change in critical, in-plane buckling loads. The 
analysis method relies on elastic properties predicted using the hierarchical, constitutive equations developed from 
the equivalent-continuum modeling technique applied to the buckling analysis of an orthotropic plate.  The results 
indicate that for the specific composite materials considered in this study, a composite with randomly orientated 
carbon nanotubes consistently provides the highest values of critical buckling load and that for low volume fraction 
composites, the nonfunctionalized nanotube material provides an increase in critical buckling stability with respect 
to the functionalized system. 

 
I.   Introduction 

 Development of high-stiffness and high-strength materials is an important part of the quest to advance 
aerospace vehicle structures. As a relatively new class of materials, single-walled carbon nanotube (SWNT) -
reinforced polymer composites provide many opportunities to demonstrate the performance potential of 
nanostructured materials for use in structural applications. In particular, SWNT materials have demonstrated the 
potential for order-of-magnitude increases in strength and stiffness relative to standard carbon-fibers used in typical 
polymeric composites.1

In contrast to carbon-fiber composites, the SWNT-polymer composites are considered nanostructured in the 
sense that the primary constituents have structure that can be readily described at the nano-scale. These material 
descriptions then provide the basis for the development of the underlying structure-property relationships that can be 
subsequently used in analysis models to tailor or enhance performance of structural components. To be truly useful, 
the structure-property relationships and related models must span multiple length scales and be versatile enough to 
be used in parametric studies that influence material development and design.  
 Reducing structural weight will continue to be one of the key design criteria for aerospace vehicles. 
Addressing this weight criterion while at the same time attempting to increase critical material properties, such as 
strength and stiffness, remains the primary challenge for the material developers. Eventually, in a robust design 
process, these enhancements to material properties must then translate into enhanced structural properties such as 
higher values of buckling resistance. It is this specific problem, the multi-scale linking of intrinsic, nano-scale 
material definitions to macro-scale structural stability that provides the motivation for this paper. 
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Buckling resistance is an important consideration in the design of thin-walled, lightweight aerospace vehicle 
structures. Thus, studies of the effects of SWNT structure on the global buckling resistance of a basic structural 
element, such as a flat plate, serve as a first-order means for assessing the potential of SWNT-reinforced polymeric 
composites. As a natural progression toward this type of global assessment, several studies that examine the 
compressive buckling behavior of an individual nanotube, unsupported by a surrounding matrix, have been 
conducted using a range of analysis techniques. The typical representation of a SWNT is a cylindrical, lattice 
structure of carbon atoms with a tube diameter of approximately one nanometer and tube length varying from tens of 
nanometers to ten of microns. To investigate the influence of van der Waals forces on the compressive buckling of 
double-walled nanotubes, Ru2 developed a model based on an elastic shell analysis. In a related study, Pantano, et 
al.3 utilized shell finite elements with the van der Waals interactions modeled with special interaction elements. Both 
compressive buckling and post-buckling behavior were predicted and compared with molecular dynamics results. 
 The more general problem of structural stability of heterogeneous materials and the influence of scale has 
also been examined recently by Miehe, et al.4 Extending down to the microscale, this study examined periodic, fine-
scale material structures using a scaled continuum approach. This coupled, macro-to-micro approach revealed that 
one of the primary modeling obstacles was the selection of the relevant size of the representative volume element. 
Using a strictly continuum approach, Parnes, et al.5 modeled the influence of reinforcement volume fraction on in-
plane buckling of a composite plate. In Parnes study, it was assumed that carbon nanotube reinforced polymers 
would behave in a similar manner to the predicted behavior of dilute or low volume fraction composites. 
 The emphasis of these previous studies was on selected modes of failure associated with compression 
loading: nanotube buckling and local stability. The objective of the present paper is to develop a multi-scale analysis 
model to predict the influence of molecular attributes on the macro-scale, global structural stability of an SWNT-
polymer composite plate subjected to a general state of in-plane mechanical loads. The determination of the SWNT-
polymer composite elastic stiffness properties used in the current study was described previously by Odegard, et al.6

In this previous study, the mechanical behavior of the SWNT-polymer composite was assumed to depend not only 
on the individual properties of the polymer and the nanotubes, but also on the nanotube/polymer interaction. Four 
molecular-level structural items were defined by this previous study as the primary molecular attributes, controlled 
at material synthesis, which could influence final properties of the composite. These four attributes were nanotube 
length, volume fraction, nanotube orientation, and nanotube functionalization. The latter item, nanotube 
functionalization, was defined as the formation of a chemical covalent bond between the nanotube and polymer 
directly. The influence of these four intrinsic structure attributes on bulk constitutive properties was investigated 
using a hierarchical modeling approach.7,8 

To accomplish the objective of the present study, results are presented herein that illustrate the effects of 
nanotube functionalization, nanotube length, volume fraction, and nanotube orientation on the elastic stiffness 
properties and buckling resistance of a single-walled carbon-nanotube-reinforced polymeric-composite plate. First, 
the equivalent-continuum modeling approach and the micromechanical analysis are used to determine the elastic 
material properties of the composite are described. Next, nondimensional parameters and equations that define the 
buckling behavior of thin, specially orthotropic plates that are subjected to uniform axial compression, shear, or pure 
in-plane bending are presented. More specifically, equations for infinitely long plates with simply supported or with 
clamped edges are presented.  Finally, results are presented and discussed that illustrate the effects of nano-scale 
structural parameters on the buckling resistance of the composite plates. 
 

II.   Materials 
The material system used in this study was a carbon nanotube reinforced polymer composite. The carbon 

nanotube material was modeled as a single-walled (10,10) nanotube of radius 6.78 Å and variable length. The 
polymer matrix material was assumed to be isotropic, amorphous polyethylene matrix with a representative Young’s 
modulus and Poisson’s ratio of 0.9 GPa and 0.3, respectively.   
 

III.   Equivalent-Continuum Modeling 
 Using a hierarchical modeling scheme, the equivalent-continuum modeling technique of Odegard, et al.7,8 was 
used to predict the bulk elastic properties.  Briefly, the hierarchical modeling method relies on three major steps.  
First, a suitable representative volume element (RVE) of the nano-structured material is chosen based on the 
geometry of the molecular model.  Second, an equivalent-truss model of the RVE is developed as an intermediate 
step to link the molecular and equivalent-continuum models.  Finally, an equivalent-continuum model of the RVE is 
developed in which the total strain energy in the molecular and equivalent-continuum models, under identical 
loading conditions, is equal.  The effective mechanical properties of the equivalent-continuum are then determined 
directly by equating strain energies of the systems.   
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A.   Molecular Model 
 The RVE of a typical nano-structured material is on the nanometer length scale, therefore, the material of the 
RVE is not continuous, but is an assemblage of many atoms.  Interaction of these atoms is described with a 
molecular-mechanics force field.9,10 The molecular model represents the RVE of the equilibrium molecular structure 
of the nano-structured material.  

 Molecular dynamics (MD) simulations were used in the present study to determine the equilibrium 
structures of the nonfunctionalized and functionalized composite.  For the two composite systems, the starting 
configuration for the MD simulation was a crystalline polyethylene matrix containing a (10,10) single-walled carbon 
nanotube.  For both models, the nanotube and polymer chains were replicated across the periodic boundaries of the 
simulation cell, making them infinitely long. In the functionalized composite, two polymer chains were attached to 
six carbon atoms of the nanotube by chemical linkages consisting of 2 CH2 groups.   Equilibration of these initial 
structures was carried out with molecular dynamics simulation using the Brenner potential to describe all the 
chemical bonds in the system. The van der Waals interactions were simulated with a Lennard-Jones potential.  The 
resulting structures were then used to compose the RVE.  In the RVE, the molecular mechanics force field defined 
the interactions of the atoms in terms of bond stretching, bond-angle variation, and Van der Waals (Lennard-Jones) 
interactions.8

B.   Truss Model 
 The geometry of the molecular structure defined by the MD simulations was used to define an equivalent-
truss structure. To implement the resultant equivalent-truss structures, finite element models were developed, where 
each element was a three-dimensional pin-jointed truss element with six degrees of freedom (three displacement 
components on each end) that represented a single atomic interaction.  Each node corresponded to an atom in the 
equilibrium structure of the molecular model.  The Young’s moduli of the truss elements were determined such that 
the total molecular potential energy of the molecular model and the strain energy of the equivalent-truss are equal 
for the same loading conditions.  
 
C.   Continuum Model 
 With the equivalent-truss structure defined, the continuum models were constructed.  The geometries of the 
homogeneous, equivalent-continuum RVE’s were assumed to be cylindrical, similar to that of the molecular and 
truss models.   The mechanical properties of the solid-cylinder continuum models were determined by equating the 
total strain energies of the equivalent-truss and equivalent-continuum models under identical loading conditions. 
The molecular model of the functionalized nanotube/polyethylene composite was assumed to exhibit the symmetry 
of an orthotropic material.  Therefore, only nine independent material parameters were required to determine the 
entire set of elastic constants. Each of the nine parameters was determined from a single boundary condition that 
was applied to both the equivalent-truss and equivalent-continuum models.  Once the mechanical properties of the 
equivalent-continuum RVE’s were determined, the two composite material RVE’s were assumed to behave in the 
composite as effective fibers and were used in subsequent micromechanical analyses to predict the influence of 
effective fiber volume fraction, orientation, and length.   
 
1.   Effective-Fiber Constitutive Model 

The constitutive relationship of an orthotropic equivalent-continuum RVE (which is henceforth also referred 
to as an effective fiber) is 
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where ijσ and ijε are the stress and strain components, respectively (i,j = 1,2,3),  and f
klC are the elastic stiffnesses  

of the effective fiber (denoted by superscript f) which are written in Voigt's abridged index  notation (k,l = 1,..,6).   
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Nine independent elastic properties are required to describe the overall elastic behavior of an orthotropic 
material, as mentioned previously and shown in Eq. (1).  For convenience, the nine independent elastic properties 

that are used to describe the overall behavior of the effective fiber are the three elastic axial stiffnesses, 11
fC , 22

fC ,

and 33
fC ; the three plane-strain bulk moduli, 23

fK , 13
fK , and 12

fK ; and the three elastic shear stiffnesses, 44
fC , 55

fC ,

and 66
fC . The three plane-strain bulk moduli are defined as 
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where the subscripts indicate the plane that is subjected to a plane-strain deformation. Once the nine independent 
elastic properties are determined, the elastic interaction stiffness components, C23, C13, and C12, can be calculated 
from the relations in Eq. (2). 
 At this point in the model development, the values of the nine elastic parameters are unknown.  These values 
are determined by applying nine identical sets of boundary conditions to the equivalent-truss model and the effective 
fiber, and by subsequently equating the strain energies by adjusting the nine independent elastic properties.  The 
calculated values of the nine independent parameters for the functionalized and nonfunctionalized effective fibers 
are listed in Table 1.   

 

IV.    Micromechanical Modeling 
 Constitutive models of the effective fiber/polymer composites were obtained from a micromechanical 
analysis by using the mechanical properties of the nanotube/polymer effective fibers and the bulk polymer matrix 
material.  For the composites considered in this study, the polymer molecules that were near the polymer/nanotube 
interface were included in the effective fiber, and it was assumed that the polymer matrix surrounding the effective 
fiber had mechanical properties equal to those of bulk polyethylene.  It was also assumed that perfect bonding 
existed between the nanotube/polymer effective fibers and the surrounding polymer matrix in the micromechanics 
analysis. 

Table 1. Equivalent-Continuum Properties (GPa). 

 
Nonfunctionalized 

effective fiber 
Functionalized 
effective fiber 

11
fC 548.7 487.7 

22
fC 16.8 24.5 

33
fC 16.5 20.6 

23
fK 14.8 19.5 

13
fK 149.3 137.1 

12
fK 149.2 138.7 

44
fC 7.1 12.7 

55
fC 144.0 155.4 

66
fC 144.9 137.0 
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A micromechanics-based Mori-Tanaka method was used to predict the elastic mechanical properties of the 
composite material.11 For this method, the overall elastic-stiffness tensor of the composite containing orthotropic 
effective fibers embedded in a matrix material is  

 ( )( ) 1

m m f f f m f fc c c c
−

= + +C C C T I T  (3) 

where cf and cm are the effective fiber and matrix volume fractions, respectively, Cf and Cm are the stiffness tensors 
of the effective fiber and matrix, respectively, I is the identity tensor, the angle brackets indicate an effective-fiber 
orientation average, and Tf is the dilute strain-concentration tensor of the effective fiber, and is given by 

 ( ) 1
1

f m f m

−− = + − T I SC C C  (4) 

where S is the Eshelby12 tensor, which is given in detail elsewhere.13 
While it is convenient to establish constitutive equations for composites in terms of the homogenized-

composite stiffness tensor, C, The Young’s and shear moduli are the elastic constants that are most often used to 
compare mechanical properties.  While the shear moduli of the composite material (G44, G55, G66) are simply equal 
to the shear-stiffnesses  (C44, C55, C66), the Young’s moduli (E1, E2, E3) were calculated by using the components of 
the compliance tensor of the composite material, which was determined by inverting the composite stiffness tensor, 
C of the composite.14 The subscripts of the Young’s moduli and shear moduli indicate the principal direction 
associated with the quantity, similar to Eq. (1).  Therefore, E1 is the longitudinal Young’s modulus (parallel to the 
nanotube), E2 and E3 are transverse Young’s moduli, G44 is the transverse shear modulus, and G55 and G66 are 
longitudinal shear moduli.  In a random composite, defined as a material with randomly oriented fibers distributed in 
a uniform manner, the material is assumed to be isotropic.  For the isotropic, random composite, mechanical 
properties are completely described by the Young’s modulus, E (E = E1 = E2 = E3), and shear modulus, G (G = G44 = 
G55 = G66). 
 For the effective fiber/polymer composites considered in the present study, the elastic stiffness components, 
volume fraction, length, and orientation of the effective fiber were used for the fiber properties in Eq. (3).  The 
calculations were performed for both perfectly aligned and three-dimensional randomly oriented effective fibers.  

V.     Plate Buckling Equations 
 The plate buckling equations used to assess the benefits of the SWNT-reinforced polymeric composites 
considered in the present study are the simple closed-form equations presented by Nemeth for specially orthotropic 
plates.15,16 These equations are for infinitely long plates with a constant thickness (t), a constant width (b), and with 
either simply supported or clamped edges. The solutions for infinitely long plates are particularly useful in 
preliminary design of structural elements because they represent lower bounds to the corresponding festoon 
buckling-load-versus-plate-aspect-ratio curves for finite-length plates. Moreover, the equations are based on 
classical plate theory and are for plates that are subjected to uniform axial compression (NX), uniform shear (NS), or 
pure in-plane bending loads (NB), as shown in Fig. 1. As also shown in Fig. 1, the plate coordinates are designated 
(x, y) and the material coordinates are designated (1,2,3). For the composites considered herein, both coordinate 
systems are coincident. Moreover, the plate is presumed to consist of a single layer of homogeneous, specially 
orthotropic material. 

Classical plate theory assumes that each layer of material is in a state of plane stress. For the single layer of 
homogenized material considered for the plates herein, the material constitutive relation is given in terms of the 
nonzero principal-material-direction stresses by 
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where the stiffness matrix, commonly called the reduced stiffness matrix,  [Q] is given explicitly by 
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and the four independent elastic constants are E1, E2, G12, and ν12. For a single-layer orthotropic plate, the bending 
stiffness matrix [D] is then given by 

 
3

[ ] [ ]
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t
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As is well known, the buckling behavior of thin plates is represented by a fourth-order partial differential 
equation, with homogeneous boundary conditions. The critical, or buckling, load is found by solving the associated 
boundary-eigenvalue problem for the smallest value of the applied load. For the three distinct types of in-plane loads 
considered herein (compression, shear, and bending), the buckling formulas are given in terms of the 
nondimensional buckling coefficients given by 
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where the superscript cr denotes the critical value of the applied load that corresponds to  buckling. The simplified 
buckling equations are presented in table 2 and were determined by performing a least-squares fit to response curves 
determined by a special-purpose Rayleigh-Ritz analysis. The buckling coefficients given in table 2 depend only on a 
single nondimensional parameter that is given by 

 12 66

11 22

2D D

D D
β += (11) 

Nemeth provides the following simplified linear expressions for the buckling coefficient: 

 
To make direct comparisons of plate buckling resistance, the buckling coefficients defined herein are not 

the best choice. It is more useful and convenient to use a buckling load that is nondimensionalized with respect to 
the bending stiffness of an isotropic plate made of the bulk polymer material. For the bulk polymer matrix material, 
let Ep and νp be defined as the Young’s modulus and Poisson’s ratio respectively. The bending stiffness for an 
isotropic, bulk polymer plate is then given as 

Table 2. Buckling coefficients for in-plane loading. 

 Simply supported edges Clamped edges 

KX 2+2β 4.602+2.359β

KS 3.629+1.644β 6.493+2.414β

KB 13.425+10.449β 26.947+12.667β
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To obtain the desired nondimensional buckling loads, it is convenient to define the nondimensional stiffness ratio  

 11 22* D D
D

D
= (13) 

giving the following definitions of the nondimensional buckling loads. 
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VI.     Results and Discussion 

 In this section, the elastic constants and critical buckling behavior of the three SWNT-polymer composite are 
presented as a function of nanotube length, volume fraction, orientation, and functionalization. Based on these 
results, implications for design and material development are discussed. 
 
A.   Elastic Properties of Composites  

The longitudinal and transverse Young’s moduli and the shear modulus of the homogenized, nanotube-
reinforced composites are plotted in Figs. 2 and 3 respectively, as a function of nanotube length, for a 1% nanotube 
volume fraction.  Two groups of curves are shown in the figures that correspond to composites with the nanotubes 
either longitudinally or transversely aligned, like well-known unidirectional carbon-fiber-reinforced composites. A 
third group of curves is shown in the figures for the case in which the nanotubes are randomly oriented, like 
chopped-fiber composites that are commonly found in practice. 

The data in Figs. 2 and 3 indicate that at a nanotube length of about 400 nm, the efficiency of load transfer 
between the SWNT and the matrix material is nearly maximized.  At a length of 450 nm, functionalization reduces 
the longitudinal Young’s modulus (E1) of the aligned composite and the Young’s modulus of the random composite 
by 11% and 7%, respectively.  In contrast, the transverse Young’s modulus of the aligned composite exhibits no 
dependence on nanotube length or functionalization. Based on the results presented in Fig. 3, functionalization 
decreased the shear modulus of the random composites whereas there was no significant effect of functionalization 
on the shear modulus of the aligned composite as the nanotube length was increased.   

The longitudinal and transverse Young’s moduli of the random and aligned composites are shown in Figs. 
4 and 5 respectively, as a function of nanotube volume fraction, for a constant nanotube length of 400 nm.  Two 
groups of curves are shown in Fig. 4 that corresponds to composites with the nanotubes either longitudinally or 
randomly aligned. A single group of curves is shown in Fig. 5 that corresponds to transverse alignment of the 
nanotubes. Over the complete range of nanotube volume fraction shown, the functionalization of the nanotube 
reduced the longitudinal Young’s modulus of the composite. In contrast, the transverse Young’s moduli of the 
composite improved when the nanotubes were functionalized.  The enhancement is evident for nanotube volume 
fractions greater than 10 %.    

 
B.   Buckling Behavior 

 Nondimensional buckling loads for all three loading conditions and both boundary conditions (Table 2) 
previously described were calculated as a function of nanotube length, volume fraction, orientation, and 
functionalization. These predicted results are plotted in Figs. 6-17.  

The first set of buckling results, presented in Figs. 6-11, represent the nondimensional buckling loads as a 
function of nanotube length for a fixed 1% volume fraction. For all cases, including all loading and support 
conditions, the nondimensional buckling load was found to be a strong function of nanotube length with an increase 
in nanotube length resulting in a corresponding increase in buckling load. The rate of change varies according to 
alignment and functionalization, but in particular, the rate of change in buckling was most significant at nanotube 
lengths below 200 nm. For the compression and bending load cases, a divergence between the buckling load of the 
functionalized and nonfunctionalized composites occurred as nanotube length exceeded the 200 nm range. In 
general, for all loading cases, the nondimensional buckling loads for a clamped boundary condition exceeded the 
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simply supported cases. For nanotubes lengths greater than 200 nm, the highest buckling loads are exhibited by the 
randomly aligned, nonfunctionalized composite. 

The second set of buckling results, presented in Figs. 12-17, represent the nondimensional buckling loads 
as a function of nanotube volume fraction, for a fixed nanotube length of 400 nm. In general, for all cases (including 
all loading and support conditions), the composites reinforced with randomly oriented nanotubes exhibit upwards of 
a six-fold increase in buckling resistance with nanotube volume fraction, as compared to the composites reinforced 
with axially aligned nanotubes. The differences between the results predicted for the composites reinforced with 
randomly oriented and axially aligned nanotubes are the most apparent for nanotube volume fractions above 10%. 
Another general observation is that the trends exhibited by the buckling load versus volume fraction curves are not a 
function of loading or boundary conditions. Once again, the highest buckling resistance occurs for the 
nonfunctionalized composites reinforced with randomly aligned nanotubes. 
 

VII.     Summary and Conclusions 
The macroscopic buckling resistance of composite plates made of a polyethylene matrix material that is 

reinforced with single-walled carbon nanotubes has been presented. In particular, the relative influence of molecular 
structure, nanotube length, and nanotube volume fraction on buckling resistance of infinitely long plates subjected to 
uniform axial compression, uniform shear, or pure in-plane bending have been quantified for both functionalized and 
nonfunctionalized nanotubes..  A multi-scale analysis method was developed that established constitutive equations by 
using a hierarchical equivalent-continuum modeling technique that predicted elastic bulk behavior, using intrinsic 
properties developed through molecular dynamics simulations.  The elastic properties of the equivalent continuum were 
then used in a micromechanics analysis to predict elastic properties of a single-layer specially orthotropic plate as a 
function of nanotube alignment. The predictions of buckling resistance were based on these resultant elastic properties. 

The results presented herein show that for a fixed nanotube volume fraction of 1% and various nanotube 
lengths, the Young’s and shear moduli of the composites reinforced with randomly oriented fibers and the 
longitudinal Young’s moduli of composites with aligned fibers  have been shown to decrease up to 11% when the 
nanotube is functionalized. In general, the buckling resistance of the random, nonfunctionalized nanotube composite 
exceeded all other cases with the increase in nondimensional buckling load ranging up to 25% (at nanotube length of 
400 nm) when compared to the composites reinforced with the aligned, functionalized nanotubes. 

 The results that have been presented herein also show that for a fixed nanotube length of 400 nm and 
various nanotube volume fractions, the longitudinal Young’s moduli of the composites reinforced with the aligned 
nanotubes and both the Young’s and shear moduli of the composite with the randomly oriented fibers have also been 
shown to decrease up to 12% when the nanotube is functionalized.  However, under these conditions, the transverse 
Young’s moduli and the transverse shear moduli of the aligned composites have shown an increase of up to 45% (at 
40% volume fraction) when the nanotube is functionalized. The buckling resistance of the random nanotube 
composites exceeded all other cases with the increase in buckling resistance ranging up to 500% (at 40% volume 
fraction) when compared to the aligned composite. At the large volume fractions, the influence of functionalization 
was to slightly decrease critical buckling loads. 

Based on all the cases considered in the present study, it appears that the use of randomly oriented, 
nonfunctionalized nanotubes would be recommended when the design criteria is focused on providing the largest 
possible value of in-plane buckling resistance. The primary elastic properties that influence this result are the 
composite-plate stiffnesses that correspond to twisting and anticlastic curvature. To achieve the largest gains in 
buckling resistance, nanotube volume fractions greater than 20% are warranted. 
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Figure 2:  Effect of nanotube length on longitudinal and transverse Young’s modulus, for fixed 
volume fraction. 
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Figure 3: Effect of nanotube length on e shear modulus, for fixed volume fraction.
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Figure 4:  Effect of nanotube volume fraction on Young’s modulus, longitudinal, for fixed nanotube 
length.
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Figure 5: Effect of nanotube volume fraction on Young’s modulus, transverse, for fixed nanotube length. 
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Figure 8: Normalized buckling load for bending, simple support, fixed volume fraction.
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Figure 7: Normalized buckling load for shear, simple support, fixed volume fraction. 
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Figure 6: Normalized buckling load for compression, simple support, fixed volume fraction. 



13 
American Institute of Aeronautics and Astronautics 

13

Nanotube length (nm)

0 100 200 300 400 500 600

N*
B

0

200

400

600

800

1000

1200

1400

1600

nonfunctionalized, aligned
nonfunctionalized, random
functionalized, aligned
functionalized, random

Clamped Support
Nanotube volume fraction=1%

 
Figure 11: Normalized buckling load for bending, clamped support, fixed volume fraction.
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Figure 10: Normalized buckling load for shear, clamped support, fixed volume fraction. 
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Figure 9: Normalized buckling load for compression, clamped support, fixed volume fraction.  
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Figure 14: Normalized buckling load for bending, simple support, fixed nanotube length. 
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Figure 13: Normalized buckling load for shear, simple support, fixed nanotube length. 
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Figure 12: Normalized buckling load for compression, simple support, fixed nanotube length. 



15 
American Institute of Aeronautics and Astronautics 

15

 

Nanotube volume fraction (%)

0 10 20 30 40 50

N*
B

0

20x103

40x103

60x103

80x103

100x103

nonfunctionalized, aligned
nonfunctionalized, random
functionalized, aligned
functionalized, random

Clamped Support
Nanotube length=400nm

 
Figure 17: Normalized buckling load for bending, clamped support, fixed nanotube length. 
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Figure 16: Normalized buckling load for shear, clamped support, fixed nanotube length. 
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Figure 15: Normalized  buckling load for compression, clamped support, fixed nanotube length. 


